Lecture 05: Chernoff-like Concentration Bounds

This lecture note closely follows the presentation of Chapter 1 and 2 of "Concentration," by Colin McDiarmid (link)

Chernoff Bound

Theorem (Chernoff Bound)

Let X_{1}, \ldots, X_{n} be independent binary random variables with $\operatorname{Pr}\left[X_{k}=1\right]=p$, for every $1 \leqslant k \leqslant n$. Let $S_{n}=\sum X_{k}$. Then for any $t \geqslant 0$,

$$
\operatorname{Pr}\left[S_{n}-n p \geqslant n t\right] \leqslant \exp \left(-2 n t^{2}\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[S_{n} \geqslant n p+n t\right] & =\operatorname{Pr}\left[\exp \left(h S_{n}\right) \geqslant \exp (h n(p+t))\right], \text { for any } h \geqslant 0 \\
& \leqslant \frac{\mathbb{E}\left[\exp \left(h S_{n}\right)\right]}{\exp (h n(p+t))} \\
& \leqslant \frac{u(h)}{\exp (h n(p+t))}
\end{aligned}
$$

- Let $u(h)$ be an upper bound on $\mathbb{E}\left[\exp \left(h S_{n}\right)\right]$
- Let h^{*} be the value of $h>0$ that minimizes $\frac{u(h)}{\exp (h n(p+t))}$

$$
\operatorname{Pr}\left[S_{n}-n p \geqslant n t\right] \leqslant \frac{u\left(h^{*}\right)}{\exp \left(h^{*} n(p+t)\right)}
$$

Bound on Expectation

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(h S_{n}\right)\right] & =\prod \exp \left(h S_{k}\right) \\
& =\prod(1-p+p \exp (h)) \\
& =(1-p+p \exp (h))^{n}=: u(h)
\end{aligned}
$$

$$
h^{*}=\operatorname{argmin}_{h}\left(\frac{1-p+p \exp (h)}{\exp (h(p+t))}\right)^{n}
$$

Set $\exp \left(h^{*}\right)=\frac{(p+t)(1-p)}{p(1-p-t)}$ to get the bound

Lemma

Let X_{1}, \ldots, X_{n} be independent such that $0 \leqslant X_{k} \leqslant 1$ for each k. Let $\mu=\mathbb{E}\left[S_{n}\right], p=\mu / n$ and $\bar{p}=1-p$. Then for any $0<t<\bar{p}$

$$
\operatorname{Pr}\left(S_{n}-n p \geqslant n t\right) \leqslant\left(\left(\frac{p}{p+t}\right)^{p+t}\left(\frac{\bar{p}}{\bar{p}-t}\right)^{\bar{p}-t}\right)^{n}
$$

- Let $p_{k}=\mathbb{E}\left[X_{k}\right]$
- $\mathbb{E}\left[\exp \left(h X_{k}\right)\right] \leqslant 1-p_{k}+p_{k} \exp (h)$, using Jensen's Inequality
- $\mathbb{E}\left[\exp \left(h S_{n}\right)\right]=\prod \mathbb{E}\left[\exp \left(h X_{k}\right)\right] \leqslant$
$\Pi\left(1-p_{k}+p_{k} \exp (h)\right) \leqslant \mathrm{AM}-\mathrm{GM}(1-p+p \exp (h))^{n}=: u(h)$

Hoeffding's Bound

Theorem (Hoeffding's Bound)
Let X_{1}, \ldots, X_{n} be independent such that $a_{k} \leqslant X_{k} \leqslant b_{k}$ for each k. Let $S_{n}=\sum X_{k}$ and $n p=\mathbb{E}\left[S_{n}\right]$. Then, for any $t \geqslant 0$,

$$
\operatorname{Pr}\left(S_{n}-n p \geqslant n t\right) \leqslant \exp \left(-2 n^{2} t^{2} / \sum\left(b_{k}-a_{k}\right)^{2}\right)
$$

Left as an exercise. Use the following lemma on the random variable ($X_{k}-\mathbb{E}\left[X_{k}\right]$) and apply $\mathrm{AM}-\mathrm{GM}$ inequality:

Lemma

Let X be a random variable such that $\mathbb{E}[X]=0$ and $a \leqslant X \leqslant b$. Then for any $h>0$,

$$
\mathbb{E}(\exp (h X)) \leqslant \exp \left(h^{2}(b-a)^{2} / 8\right)
$$

Extensions

Additional materials on the course website provide references to the following intuitions:

- Identical bounds also hold for $\operatorname{Pr}\left[\max S_{k}-k p \geqslant n t\right]$ (this uses Doob's maximal inequality for submartingales)
- Identical bounds also hold for random variables with "slightly lesser" independence
- Bounds for k-wise independent also exit
- Concentration bound for hypergeometric distribution (sampling with replacement) is tighter

Bounded Differences

Theorem

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ be a family of independent random variables with X_{k} taking values in Ω_{k}, for each k. For a real valued function f defined on $\Pi \Omega_{k}$, the following holds:

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}^{\prime}\right)\right| \leqslant c_{k}
$$

whenever \mathbf{x} and x^{\prime} differ only in the k-th coordinate. Let $\mu=\mathbb{E}[f(\mathbf{X})]$. Then for any $t \geqslant 0$, we have:

$$
\operatorname{Pr}[f(\mathbf{X})-\mu \geqslant n t] \leqslant \exp \left(-2 n^{2} t^{2} / \sum c_{k}^{2}\right)
$$

Think: Concentration of longest common subsequence

Hamming Distance

- $d_{H}(\mathbf{x}, \mathrm{y})$ is the number of coordinates where x and y differ
- $d_{H}(\mathbf{x}, A)$ is the minimum distance $d_{H}(\mathbf{x}, \mathrm{y})$, where $\mathrm{y} \in A$

Theorem

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of independent random variables with X_{k} taking values in Ω_{k}, for each k. Let A be a subset of the product space $\prod \Omega_{k}$. Then for any $t \geqslant 0$,

$$
\operatorname{Pr}[\mathbf{X} \in A] \cdot \operatorname{Pr}\left[d_{H}(\mathbf{X}, A) \geqslant n t\right] \leqslant \exp \left(-n t^{2} / 2\right)
$$

General Distance

- For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \geqslant 0$ and $\|\alpha\|_{2}=1$, define $d_{\alpha}(\mathbf{x}, \mathbf{y})=\sum_{k: x_{k} \neq y_{k}} \alpha_{k}$
- $d_{\alpha}(\mathbf{x}, A)$ is the minimum distance $d_{\alpha}(\mathbf{x}, \mathrm{y})$, where $\mathrm{y} \in A$

Theorem

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of independent random variables with X_{k} taking values in Ω_{k}, for each k. Let A be a subset of the product space $\prod \Omega_{k}$. Then for any $t \geqslant 0$ and $\alpha \geqslant 0$ and $\|\alpha\|_{2}=1$,

$$
\operatorname{Pr}[\mathbf{X} \in A] \cdot \operatorname{Pr}\left[d_{\alpha}(\mathbf{X}, A) \geqslant n t\right] \leqslant \exp \left(-n^{2} t^{2} / 2\right)
$$

- Idea is to use a "dense set A "
- Talagrand inequality will generalize this further

