


This lecture note closely follows the presentation of Chapter 1 and
2 of “Concentration,” by Colin McDiarmid (link)

Lecture 05: Chernoff-like Concentration Bounds


http://www.stats.ox.ac.uk/people/academic_staff/colin_mcdiarmid/?a=4139

Chernoff Bound

Theorem (Chernoff Bound)

Let Xi,...,X, be independent binary random variables with
Pr[Xk = 1] = p, forevery1 < k < n. Let S, =Y Xk. Then for
any t > 0,

Pr[S, — np > nt] < exp (—2nt?)
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Proof of Chernoff Bound

Pr[S, > np + nt] = Pr[exp(hS,) = exp(hn(p + t))], for any h >0
E[exp(hS,)]
= exp(hn(p + t))
u(h)
= exp(hn(p + t))

@ Let u(h) be an upper bound on E[exp(hS,)]

o Let h* be the value of h > 0 that minimizes %

u(h*)
exp(h*n(p + t))
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Bound on Expectation

Elexp(hS,)] = H exp(hSk)
=[[(@ = p+ pexp(h))
= (1—p+pexp(h))” =: u(h)

1 _ n
h* = argmin 4 < Pt pexp(h)>

exp(h(p + t))

Set exp(h*) = % to get the bound

Lecture 05: Chernoff-like Concentration Bounds



A Useful Lemma

Let Xi,...,X, be independent such that 0 < Xy < 1 for each k.
Let y =FE[Sp], p=p/nand p=1—p. Then forany0 <t <p

= n

p p+t [3 p—t
— > < = -
Pr(S, — np > nt) < ((p-l—t) <,5—t>

o Let py = E[Xk]
o El[exp(hXk)] <1 — px + pkexp(h), using Jensen's Inequality
o Elexp(hS,)] = [ Elexp(hXy)] <

[1(1 = px + prexp(h)) <am-om (1 — p + pexp(h))" =: u(h)
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Hoeffding's Bound

Theorem (Hoeffding's Bound)

Let Xi,...,X, be independent such that a;, < Xy < by for each k.
Let S, = ZX;( and np = E[S,]. Then, for any t >0,

Pr (S, — np > nt) < exp <—2n2t2/ Z(bk - ak)2>
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Proof

Left as an exercise. Use the following lemma on the random
variable (Xx — E[Xk]) and apply AM-GM inequality:

Let X be a random variable such that E[X] =0 and a < X < b.
Then for any h > 0,

E(exp(hX)) < exp(h?(b — a)*/8)
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Extensions

Additional materials on the course website provide references to the
following intuitions:

e Identical bounds also hold for Pr[max Sx — kp > nt] (this uses
Doob’s maximal inequality for submartingales)

@ lIdentical bounds also hold for random variables with “slightly
lesser” independence

@ Bounds for k-wise independent also exit

e Concentration bound for hypergeometric distribution
(sampling with replacement) is tighter
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Bounded Differences

Theorem

Let X = (X1,...,Xm) be a family of independent random variables
with X taking values in Qy, for each k. For a real valued function
f defined on [ ] Qx, the following holds:

|F(x) = F(x)] < e,

whenever x and x' differ only in the k-th coordinate. Let
w=E[f(X)]. Then for any t > 0, we have:

Pr[f(X) — > nt] < exp(—2n*t2/ )" ?)

Think: Concentration of longest common subsequence
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Hamming Distance

@ dy(x,y) is the number of coordinates where x and y differ

@ dy(x,A) is the minimum distance dy(x,y), wherey € A

Let X = (X1,...,X,) be a family of independent random variables
with X taking values in Qy, for each k. Let A be a subset of the
product space [[ Q. Then for any t > 0,

Pr[X € A] - Pr[dy(X, A) > nt] < exp(—nt?/2)
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General Distance

e For a = (ai,...,a,) > 0and ||af, =1, define
dOl(Xv y) = Zk:xkiyk Xk
@ d,(x, A) is the minimum distance dy(x,y), where y € A

Let X = (Xi,...,Xy) be a family of independent random variables
with X taking values in Qy, for each k. Let A be a subset of the
product space [[ Q. Then for any t >0 and a > 0 and |||, = 1,

Pr[X € A] - Pr[da(X, A) > nt] < exp(—n?t?/2)

o |dea is to use a “dense set A”

@ Talagrand inequality will generalize this further
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