Lecture 05: Chernoff-like Concentration Bounds

Lecture 05: Chernoff-like Concentration Bounds

This lecture note closely follows the presentation of Chapter 1 and 2 of "Concentration," by Colin McDiarmid (link)

- A - E - N

Theorem (Chernoff Bound)

Let $X_1, ..., X_n$ be independent binary random variables with $\Pr[X_k = 1] = p$, for every $1 \le k \le n$. Let $S_n = \sum X_k$. Then for any $t \ge 0$, $\Pr[S_n - np \ge nt] \le \exp(-2nt^2)$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

$$\Pr[S_n \ge np + nt] = \Pr[\exp(hS_n) \ge \exp(hn(p+t))], \text{ for any } h \ge 0$$
$$\leqslant \frac{\mathbb{E}[\exp(hS_n)]}{\exp(hn(p+t))}$$
$$\leqslant \frac{u(h)}{\exp(hn(p+t))}$$

Let u(h) be an upper bound on E[exp(hS_n)]
 I et h^{*} be the value of h > 0 that minimizes <u>u(h)</u>

Let
$$h^*$$
 be the value of $h > 0$ that minimizes $\frac{u(h^*)}{\exp(hn(p+t))}$
 $\Pr[S_n - np \ge nt] \le \frac{u(h^*)}{\exp(h^*n(p+t))}$

Lecture 05: Chernoff-like Concentration Bounds

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Bound on Expectation

$$\mathbb{E}[\exp(hS_n)] = \prod \exp(hS_k)$$

= $\prod (1 - p + p \exp(h))$
= $(1 - p + p \exp(h))^n =: u(h)$

$$h^* = \operatorname{argmin}_{h} \left(\frac{1 - p + p \exp(h)}{\exp(h(p + t))} \right)^n$$

Set
$$\exp(h^*) = rac{(p+t)(1-p)}{p(1-p-t)}$$
 to get the bound

・ロト ・回ト ・ヨト ・ヨ Lecture 05: Chernoff-like Concentration Bounds

э

Lemma

Let X_1, \ldots, X_n be independent such that $0 \le X_k \le 1$ for each k. Let $\mu = \mathbb{E}[S_n]$, $p = \mu/n$ and $\bar{p} = 1 - p$. Then for any $0 < t < \bar{p}$

$$\Pr(S_n - np \ge nt) \le \left(\left(\frac{p}{p+t} \right)^{p+t} \left(\frac{\bar{p}}{\bar{p}-t} \right)^{\bar{p}-t} \right)^n$$

- Let $p_k = \mathbb{E}[X_k]$
- $\mathbb{E}[\exp(hX_k)] \leq 1 p_k + p_k \exp(h)$, using Jensen's Inequality
- $\mathbb{E}[\exp(hS_n)] = \prod \mathbb{E}[\exp(hX_k)] \leq \prod (1 p_k + p_k \exp(h)) \leq_{AM-GM} (1 p + p \exp(h))^n =: u(h)$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

Theorem (Hoeffding's Bound)

Let X_1, \ldots, X_n be independent such that $a_k \leq X_k \leq b_k$ for each k. Let $S_n = \sum X_k$ and $np = \mathbb{E}[S_n]$. Then, for any $t \ge 0$,

$$\Pr(S_n - np \ge nt) \le \exp\left(-2n^2t^2/\sum(b_k - a_k)^2\right)$$

Lecture 05: Chernoff-like Concentration Bounds

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Left as an exercise. Use the following lemma on the random variable $(X_k - \mathbb{E}[X_k])$ and apply AM-GM inequality:

Lemma

Let X be a random variable such that $\mathbb{E}[X] = 0$ and $a \leq X \leq b$. Then for any h > 0,

 $\mathbb{E}(\exp(hX)) \leqslant \exp(h^2(b-a)^2/8)$

4 冊 ト 4 三 ト 4 三 ト

Additional materials on the course website provide references to the following intuitions:

- Identical bounds also hold for $\Pr[\max S_k kp \ge nt]$ (this uses Doob's maximal inequality for submartingales)
- Identical bounds also hold for random variables with "slightly lesser" independence
- Bounds for k-wise independent also exit
- Concentration bound for hypergeometric distribution (sampling with replacement) is tighter

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\mathbf{X} = (X_1, \dots, X_m)$ be a family of independent random variables with X_k taking values in Ω_k , for each k. For a real valued function f defined on $\prod \Omega_k$, the following holds:

 $|f(\mathbf{x}) - f(\mathbf{x}')| \leq c_k,$

whenever \mathbf{x} and \mathbf{x}' differ only in the k-th coordinate. Let $\mu = \mathbb{E}[f(\mathbf{X})]$. Then for any $t \ge 0$, we have:

$$\Pr[f(\mathbf{X}) - \mu \ge nt] \le \exp(-2n^2t^2 / \sum c_k^2)$$

Think: Concentration of longest common subsequence

Lecture 05: Chernoff-like Concentration Bounds

- $d_H(x, y)$ is the number of coordinates where x and y differ
- $d_H(\mathbf{x}, A)$ is the minimum distance $d_H(\mathbf{x}, \mathbf{y})$, where $\mathbf{y} \in A$

Theorem

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a family of independent random variables with X_k taking values in Ω_k , for each k. Let A be a subset of the product space $\prod \Omega_k$. Then for any $t \ge 0$,

 $\Pr[\mathbf{X} \in A] \cdot \Pr[d_{\mathcal{H}}(\mathbf{X}, A) \ge nt] \le \exp(-nt^2/2)$

Lecture 05: Chernoff-like Concentration Bounds

(日本)(周本)(王本)(王本)(王本)

General Distance

- For $\alpha = (\alpha_1, \dots, \alpha_n) \ge \mathbf{0}$ and $\|\alpha\|_2 = 1$, define $d_{\alpha}(\mathbf{x}, \mathbf{y}) = \sum_{k: x_k \neq y_k} \alpha_k$
- $d_{\alpha}(\mathbf{x}, A)$ is the minimum distance $d_{\alpha}(\mathbf{x}, \mathbf{y})$, where $\mathbf{y} \in A$

Theorem

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a family of independent random variables with X_k taking values in Ω_k , for each k. Let A be a subset of the product space $\prod \Omega_k$. Then for any $t \ge 0$ and $\alpha \ge \mathbf{0}$ and $\|\alpha\|_2 = 1$,

$$\Pr[\mathbf{X} \in A] \cdot \Pr[d_{\alpha}(\mathbf{X}, A) \ge nt] \le \exp(-n^2 t^2/2)$$

- Idea is to use a "dense set A"
- Talagrand inequality will generalize this further

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶